Statistics for Astronomy 2022-2023
 Re-EXAMINATION
 2 Febıualy 2023 (1500-1700)

DIRECTIONS Allow 2 hours Wite you name and student number at the top of every page of you solutions Please explan cleanly all of the steps that you used to denve a result, Please make ceitan that you handwiting is ieadable to someone besides youself

1 Answer the following open questions (7 points/question)
(a) Consider the case that Jeffrey's proor is used for prob $(a \mid I)$, the pror probability for vaiable x Use the tiansfomation rule to calculate piob $(\log (x) \mid I)$, the probability distribution function of the (natual) loganthm of 2 , fiom $\operatorname{prob}(a \mid I)$
(b) Using Cox's product and/or sum rules, derve the mathematical for mula that describes Bayes' theorem Explam why the denomnator in Bayes' formula, is often referred to as the "evidence"
(c) Describe and compare parameter estrmation and model comparison What role does the evidence play in each process?
(d) Descube the princrple of indufference and give a simple example of its application to determine a piobability distıbution function
(e) Given a continuous distıbution function $\operatorname{prob}(x)=\frac{1}{2} x$ for $0 \leq x \leq 2$ and prob $(x)=0$ otherwise, calculate the expectation value $\langle x\rangle$ and the vanance of $x, \operatorname{Var}(x)$
(f) Given a one-dimensional piobability density function, describe how you would find and compute the 95% confidence inter val
(g) There are several ways to discover exoplanets, moluding 1 adial velocity searches In a radral velocity search, an exoplanet is found by measuing the change of the radal velocity of its host star Such an exoplanet is often characterized by the period P and eccenticity e of its orbit These aren't the only parameters that need to be infened the model of a planet's orbit also mcludes the mean radial velocity of the stai V_{0}, the velocity amplitude of the or bit K, the "longitude of the periastion" ω, and the fiaction of the orbit piol to the start of the data taking at which the periastion occued χ Given some data D (which includes the velocities of the host star measured at some Julıan Dates).
1 name and descube the pıocess by which you could estımate the joint probability destribution function $\operatorname{prob}(P, e \mid \mathrm{D}, I)$ fiom the full posterior probability distıbution prob $\left(V_{0}, K, P, e, \omega, \chi \mid \mathrm{D}, I\right)$ determmed fiom the oibital model, and
11 describe how you would determme the best estrmates of the penod P_{0} and eccenticity e_{0} of the orbit and the uncertanties on these best estimates σ_{P} and σ_{e}
(h) Considel the following problem a dataset of N values, $\left\{y_{2} \pm \sigma_{\imath}\right\}$ (with $1 \leq \imath \leq N$) and associated positions $\left\{x_{\imath}\right\}$, is fitted to the model $Y(x)=a \sin (x)+b \cos (x)$, thereby solving for a and b Wite down the corresponding χ^{2} function for this fitting problem

2 Open questions mvolving derivations
(a) (16 points) Given a data set $\left\{x_{2} \quad 0 \leq 2<N\right\}$ of N values, where each value x_{2} is independent and diawn fiom the same normal (Gaussian) distribution with known (constant) standar deviation σ, use Bayes' theorem to piove that the most piobable value μ_{0} for the mean of the set is the average of the data Assume a flat piror for the mean μ

Figune 1 'The Lighthouse pioblem
(b) (14 points) Consider "the hghthouse problem" (Frg 1) A lighthouse at sea is at a position α along the coast and a distance β at sea The shoie is lined with photodetectors that record only that a flash has been recorded, but not the angle from which it came N flashes have been recor ded at positions $\left\{x_{\imath} \quad 0 \leq \imath<N\right\}$ along the coast, coriesponding with azmuth duections $\left\{\theta_{l} \quad 0 \leq \imath<N\right\}$. The relation between a detected position and azimuth direction is given by $\beta \tan \theta_{2}=x_{2}-\alpha$ We know that the lighthouse flashes unformly in the directions of interest $\operatorname{prob}\left(\theta_{2} \mid \alpha, \beta, I\right)=\frac{1}{\pi}$ for $-\frac{\pi}{2} \leq \theta_{2} \leq \frac{\pi}{2}$ Wite down the tiansformation iule, and use it to calculate $\operatorname{piob}\left(x_{2} \mid \alpha, \beta, I\right)$
Hint the table below contauns some of the common tugonometnc denvatives

function	derıvative	function	delıvative
$\sin x$	$\cos x$	$\arcsin x$	$1 / \sqrt{1-x^{2}}$
$\cos x$	$-\sin x$	$\arccos x$	$-1 / \sqrt{1-x^{2}}$
$\tan x$	$\sec ^{2} x$	$\arctan x$	$1 /\left(1+x^{2}\right)$

(c) (4 points) The probability density function delived in the plevious question is descuibed by two different distribution functions What are the names of these distribution functions and how are they related?
\rightarrow See next page for question 3

